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ABSTRACT

WiFi based gesture recognition has received significant attention

over the past few years. However, the key limitation of prior WiFi

based gesture recognition systems is that they cannot recognize

the gestures of multiple users performing them simultaneously. In

this paper, we address this limitation and propose WiMU, a WiFi

based Multi-User gesture recognition system. The key idea behind

WiMU is that when it detects that some users have performed

some gestures simultaneously, it first automatically determines the

number of simultaneously performed gestures (Na ) and then, using

the training samples collected from a single user, generates virtual

samples for various plausible combinations of Na gestures. The

key property of these virtual samples is that the virtual samples for

any given combination of gestures are identical to the real samples

that would result from real users performing that combination of

gestures. WiMU compares the detected sample against these virtual

samples and recognizes the simultaneously performed gestures. We

implemented and extensively evaluated WiMU using commodity

WiFi devices. Our results show that WiMU recognizes 2, 3, 4, 5, and

6 simultaneously performed gestures with accuracies of 95.0, 94.6,

93.6, 92.6, and 90.9%, respectively.
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1 INTRODUCTION
Motivation: Human gesture and activity recognition is the core

technology that enables a countless number of applications in di-

verse areas, such as health care monitoring [11, 23], sleep mon-

itoring [24], fitness tracking [12, 19], and elderly care [22, 35].

Recently, a new class of human gesture recognition systems has

spawned that leverages WiFi signals to recognize human gestures
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[6, 13, 14, 17, 20, 25, 27, 28, 30, 34]. The fundamental principle that

enables human gesture recognition using WiFi signals is that the

wireless channel metrics, such as channel state information (CSI)

and received signal strength (RSS), change when a user moves in

a wireless environment. The patterns of change in these wireless

channel metrics are unique across different gestures. WiFi based

gesture recognition systems first learn these patterns of change

using machine learning techniques for each predefined gesture and

then recognize them as the user performs them at runtime.

The key limitation of prior WiFi based gesture recognition sys-

tems is that they can recognize a user’s gestures only if a single

user moves in the environment. If multiple users move simultane-

ously, prior WiFi based systems cannot recognize their gestures

anymore. The only exception is WiSee [25] that made an effort

towards recognizing gestures in the presence of interfering users.

However, when considered from the perspective of multi-user ges-

ture recognition, WiSee has two limitations (as also mentioned

by the authors in [25]). First, it does not recognize gestures of all

users when multiple users perform them simultaneously; it only

recognizes gestures of one user and considers the remaining as

interfering users. Second, in the presence of interfering users, it

can recognize only two gestures, push and pull, and the accuracy

drops to 60% when the number of interfering users reaches four. It

is worth noting, however, that the primary objective of WiSee was

not to develop a multi-user compatible gesture recognition system,

rather it was to demonstrate the feasibility of using WiFi signals for

gesture recognition. Consequently, WiSee’s treatment of handling

multiple users was only preliminary. To conclude, the inability of

existing WiFi based gesture recognition systems to recognize simul-

taneously performed gestures significantly restricts their practical

usability. Therefore, to bring WiFi based gesture recognition a step

closer to real world deployment, it is imperative to address and

overcome this key limitation of prior art.

Problem Statement: In this paper, our objective is to design a

WiFi based gesture recognition system that can recognize gestures

of multiple users when the users perform them simultaneously. For

a set of gestures to be considered simultaneously performed, the

time when any given gesture in that set was performed should

have some overlap with the time of performance of at least one

other gesture in that set. The gesture recognition system should

further satisfy three requirements: 1) the start and end times of

gestures are not required to be synchronized across users; 2) each

user can perform any of the predefined gestures; and 3) the system

can be implemented on commodity WiFi devices. Note that our

objective is only to recognize predefined gestures when the users

perform them simultaneously, and not to further determine which

user performed which predefined gesture.

Proposed Approach: A possible solution to recognize simulta-

neously performed gestures of multiple users is to first request
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users to provide training samples for all possible combinations

of gestures and then use these training samples to learn the pat-

terns of change in wireless channel metrics for each combination.

While theoretically plausible, this solution is impractical because

the number of training samples to collect would be prohibitively

large. For example, to recognize Np predefined gestures of up to

Na simultaneously performing users, the total number of possible

combinations (with repetitions allowed, i.e., more than one user can

perform the same gesture) is
∑Na

i=1(Np )i , which evaluates to 19530

for Np = 5 and Na = 6. With 10 training samples per combination,

this solution will require over a whopping 195300 training samples.

The number of these combinations actually become infinite when

we consider the fact that in practical settings, the start and end

times of gestures of users are not synchronized.

Another approach is to first separate the contribution of each

user’s movements from the net measurements of wireless channel

metrics and then evaluate the separated contribution against the

training samples of each predefined gesture. The advantage of this

approach is that it requires training samples for each predefined

gesture from only a single user. Consequently, regardless of the

value of Na , if we collect 10 training samples per gesture, only one

user has to provide just 10Np samples. When Np = 5, the number

of required training samples is just 50, which is over three orders of

magnitude smaller than 195300, and practically easy to provide. Un-

fortunately, separating the contribution of each user’s movements

from the net measurements of wireless channel metrics is difficult,

and we are unaware of any existing methods that accurately and

effectively do this. This is, arguably, the key reason that the problem

of WiFi based multi-user gesture recognition has not yet seen a

successful solution. Our own exploration of this approach by using

independent component analysis [3, 18] and blind signal separa-

tion [10, 21]) based methods did not result in acceptable gesture

recognition accuracies.

In this paper, we present WiMU, aWiFi based Multi-User gesture

recognition system that recognizes the gestures of multiple users

when the users perform them simultaneously. The key component

of WiMU is our novel method that can generate a virtual sample

for any desired combination of gestures using a real sample of each

gesture in that combination. The key property of our method is that

the virtual samples that it generates for any desired combination

of gestures are identical to the real samples that would result from

real users performing that combination of gestures simultaneously.

Consequently, instead of requiring multiple users to provide train-

ing samples for all possible combinations of predefined gestures,

WiMU requires only a single user to provide training samples for

each gesture only individually. It then uses these training samples

to generate virtual samples for all those combinations of gestures

for which training samples are required, and uses these virtual

samples for training. The key idea behind WiMU is that, as soon as

it detects that some users have performed gestures simultaneously,

it first automatically determines the number of simultaneously

performed gestures (represented by Na , where Na ≥ 1) from the

detected sample. It also identifies the start and end times of these

Na gestures. Next, it generates virtual samples for various plausible

combinations of Na gestures and compares the detected sample

with them to recognize the simultaneously performed gestures.

Note that WiMU does not suffer from the shortcomings of either

of the two approaches described earlier: it neither requires users to

provide training samples for all possible combinations nor requires

to separate the contribution of each user’s movements from the net

measurements of wireless channel metrics. WiMU further satisfies

all three requirements mentioned in the problem statement. WiMU

operates on channel state information (CSI), a well known wireless

channel metric that has been extensively used in several existing

WiFi based gesture and activity recognition systems [6, 17, 32, 34].

Key Contributions: In this paper, we make three key contribu-

tions. First, we propose a method to generate virtual samples that

enables WiFi based multi-user gesture recognition without requir-

ing users to provide training samples for all possible combinations

of gestures and without requiring to separate the contribution of

each user’s movements from the net measurements of wireless

channel metrics. Second, we propose a method to automatically

identify the number of gestures as well as the start and end times

of different gestures when multiple users perform them simultane-

ously. Third, we present our implementation and extensive eval-

uation of WiMU on commodity WiFi devices. Our results show

that WiMU recognizes 2, 3, 4, 5, and 6 simultaneously performed

gestures with average accuracies of 95.0, 94.6, 93.6, 92.6, and 90.9

percent, respectively.

2 RELATEDWORK

Prior WiFi based gesture recognition systems cannot recognize

gestures when multiple users perform them simultaneously. We

categorize prior work on wireless signal (including WiFi) based hu-

man sensing systems into two broad categories: commodity device

(CD) based and specialized hardware (SH) based. The CD-based

systems can be implemented on commodity WiFi devices without

requiring any hardware modifications. The SH-based systems use

software defined radios, such as USRPs [1, 5], often along with spe-

cialized hardware, such as directional antennas or custom analog

circuits. Next, we give an overview of prior work on both CD-based

systems and SH-based systems. As our focus is on multi-user ges-

ture recognition and due to space limitation, we only describe those

prior systems that perform activity and gesture recognition.

2.1 CD-based Human Sensing Systems

WiFall detects a user’s fall using features such as activity duration

and rate of change in CSI values [17]. E-eyes generates histograms

of the CSI values and uses them as features to recognize gestures

such as brushing teeth, showering etc. [34]. HeadScan [14] and

BodyScan [13] put antennas on user’s body. HeadScan recognizes

mouth related gestures such as coughing and eating using fea-

tures that include mean, median, and standard deviation in CSI

values. BodyScan recognizes gestures similar to E-eyes but using

the shapes of CDFs of CSI values as features. WiFinger uses DWT

coefficients of combined time series of CSI values to recognize fin-

ger gestures that differ in the number of extended and folded fingers

[28]. WiGest distinguishes between gestures that give rise to three

primitives in RSS values: rising edge, falling edge, and pause [6].

WiDraw tracks the hand of a user by monitoring the changes in the

magnitudes of signals arriving at different angles from the hand

[27]. WiAG proposes a translation function to enable position and

orientation agnostic gesture recognition [30]. Unfortunately, none
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of these systems recognize simultaneously performed gestures, as

acknowledged in almost all of the papers where these systems were

first proposed. FrogEye counts the number of people in a crowd

using the hypothesis that the variance in the CSI values increases

monotonically with the number of people in a crowd [37]. Although

this hypothesis enables FrogEye to count the people, it does not

provide any insights that could be used to enable the recognition

of simultaneously performed gestures. WiHear recognizes a prede-

fined set of spoken words and further proposed a zigzag cancelation

technique to recognize spoken words of multiple users [31]. Unfor-

tunately, the zigzag cancellation technique is not well-suited for the

problem we are addressing because it captures only a small portion

of each person’s gesture and not the entire gesture.

2.2 SH-based Human Sensing Systems

AllSee uses an analog envelope-detector to extract the amplitude

of the received TV and RFID signals to identify eight gestures

performed by a single user at a time [20]. WiSee uses a USRP to

extract micro-level doppler shifts in a carrier wave due to human

movements to recognize nine different gestures performed by a

single user at a time [25]. WiSee further proposed a preliminary

method to recognize gestures in the presence of interfering users.

WiSee does not recognize gestures of all users when multiple users

perform them simultaneously; it recognizes gestures of one user

and considers the remaining as interfering users. Furthermore, in

the presence of interfering users, it can recognize only two gestures,

push and pull, and the interfering users should not be close to the

target user. In contrast, WiMU can recognize gestures of multiple

users performing them simultaneously and is largely unaffected by

the distance between the users.

Vital-Radio measures the variations in the phase of the signal

reflected by the user to measure the heart and breathing rates of a

user [9]. Wi-Vi can count the number of humans behind an obstacle

and tracks the direction of their motion by emulating an inverse

synthetic aperture radar using directional antennas [8]. WiTrack2.0

localizes multiple people simultaneously [7]. Although the objec-

tives of Vital-Radio, Wi-Vi, and WiTrack2.0 are not to recognize

human gestures, we have mentioned them because they handle

“multiple” users. However, the methods employed by them to han-

dle multiple users cannot be trivially adapted to enable the recogni-

tion of simultaneously performed gestures for two reasons: 1) they

employ models that are geared towards quantifying the effects of

human presence on wireless signals, and not of human movements

on wireless signals, and 2) they use specialized hardware. The work

on radio tomography imaging generalizes to multiple people, but

requires much larger number of transmitters and receivers [36].

3 MULTI-USER MOVEMENT MODEL

In this section, we model the effects of simultaneous movements of

multiple users on CSI values. The insights that we will develop from

this model will guide the design of various components of WiMU

such as to automatically determine the number of simultaneously

performed gestures in a detected sample, to identify the start and

end times of each gesture in the detected sample, and to generate

virtual samples for any desired combination of gestures. Before

deriving this model, we give a quick overview of what CSI is.

WiFi devices typically consist of multiple transmit (Tx) and re-

ceive (Rx) antennas. An 802.11n/ac MIMO channel between each

Tx-Rx antenna pair comprises multiple sub-carriers. Let X (f , t)
and Y (f , t) be the frequency domain representations of transmitted

and received signals, respectively, on an OFDM subcarrier with

frequency f at time t between a given Tx-Rx pair. The two signals

are related as Y (f , t) = H (f , t) × X (f , t), where H (f , t) represents
the complex-valued channel frequency response (CFR) for sub-

carrier with frequency f at time t . Let NTx and NRx represent

the number of Tx and Rx antennas, respectively, and let S repre-

sent the number of subcarriers between each Tx-Rx pair. Each CSI

measurement comprises S × NTx × NRx CFR values, one for each

subcarrier between each Tx-Rx pair. As WiFi network interface

cards (NICs) generate CSI measurements repeatedly, we essentially

obtain S × NTx × NRx time-series of CFR values. Onward, we will

call each time-series of CFR values a CSI-stream.

3.1 CFR Power Model

Wang et al. modeled the effects of movements of a single user on

CSI values [32]. Our model generalizes their model from single to

multiple users.Wang et al. showed that although humanmovements

affect both phase and magnitude of CFR values, the CFR phase

measured on commodity WiFi devices has large error [32, 33]. The

phase sanitization methods, such as [26], are not useful as they filter

out any phase shifts due to human movements. Wang et al. further

showed that while it is hard to precisely measure the CFR phase

on commodity WiFi devices, it is simple to accurately measure

the CFR power [32, 33]. Thus, next, we derive an expression that

quantifies the effects of movements of multiple users on CFR power,

represented by |H (f , t)|2.
As surrounding objects reflect WiFi signals, a transmitted sig-

nal arrives at the receiver from multiple paths. Let ak (f , t) be the
complex-valued representation of the initial phase and the attenua-

tion of the kth path at time t for a signal with carrier frequency f .

Let dk (t) represent the length of the kth path at time t . If a trans-
mitted signal with carrier frequency f arrives at the receiver from

multiple paths and the difference between the carrier frequencies

of sender and receiver is Δf , then the aggregate CFR of the wireless

channel is (see [29]):

H (f , t) = e−j2πΔf t
∑
∀k

ak (f , t)e−j
2πdk (t )
c/f

We can represent this aggregate CFR as the sum of a dynamic and

a static component. The dynamic component changes as the users

move and is the sum of the CFRs of all those paths that arrive at the

receiver after reflecting from the moving body parts of the users.

The static component is not affected by the movement of any user

and is the sum of the CFRs of all those paths that arrive at the

receiver without reflecting from any moving body parts. Let Na

users simultaneously perform Na gestures, and let Pi represent
the set of all those paths that reflect from the moving body parts

of the ith user, where 1 ≤ i ≤ Na , and arrive at the receiver with

or without any further reflections. Let Hs (f ) represent the static
component of the aggregate CFR. We can express the aggregate

CFR in the equation above as follows.

H (f , t) = e−j2πΔf t
(
Hs (f ) +

∑
∀k ∈⋃Na

i=1 Pi
ak (f , t)e−j

2πdk (t )
c/f

)
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Letvk represent the rate at which the length of thekth path changes.
We call vk the speed of the kth path. Thus, dk (t) = dk (0) +vk t . By
multiplying both sides of the equation above with their respective

complex conjugates, and after some algebraic manipulations, we

get the following expression for the aggregate CFR power.

|H (f , t)|2 =
∑

∀k ∈⋃Na
i=1 Pi

|ak (f , t)|2 + |Hs (f )|2

+
∑

∀k,l ∈⋃Na
i=1 Pi ; k�l

2|ak (f , t)al (f , t)| cos
(
2π (vk−vl )t

c/f +
2π (dk (0)−dl (0))

c/f +ϕkl

)

+
∑

∀k ∈⋃Na
i=1 Pi

2|Hs (f )ak (f , t)| cos
(
2πvk t
c/f +

2πdk (0)
c/f + ϕsk

)
(1)

where 2π f (dk (0) − dl (0)) /(c/f ) + ϕkl and 2π f dk (0)/c + ϕsk are

constants that represent the initial phase offsets for different paths.

3.2 Insights

Next, we present three insights from Eq. (1) and describe how these

insights guided the design of various key components of WiMU.

Insight 1: Eq. (1) states that the aggregate CFR power is the sum

of a constant offset and a set of sinusoids, where the frequencies of

the sinusoids are the functions of the speeds of the paths. As the

speed of a path is determined by the speed of the moving body part

from which that path reflects, the frequencies in the aggregate CFR

power are essentially the functions of the speeds of the moving

body parts of the users. This leads to our first insight: as different

gestures involve movements of body parts at different speeds, each

combination of gestures gives rise to a unique pattern of frequencies

in the aggregate CFR power. By first learning these patterns for any

given combination of Na gestures from the virtual samples of that

combination, WiMU recognizes that combination of gestures at

runtime by matching the patterns of frequencies in the aggregate

CFR power with the learnt patterns.

Insight 2: The speed of each path reflecting from a stationary user

is zero. As soon as a stationary user moves, the speeds of the paths

reflecting from the now-moving parts of his/her body attain a non-

zero speed. As per Eq. (1), all such paths either introduce certain

new frequencies in the aggregate CFR power or significantly change

the magnitudes of those frequencies if they were already present.

Similarly, if a moving user stops, the speed of each path reflecting

from this now-stationary user becomes zero, and any frequencies

in the aggregate CFR power due to the speeds of these paths now

vanish. This leads to our second insight: increase (decrease) in the

number of moving users results in an increase (decrease) in the number

of frequencies with non-negligible magnitudes in the aggregate CFR

power.WiMU leverages this insight to detect the start/end of each

gesture in a given set of simultaneously performed gestures by

looking for a rapid increase/decrease in the number of frequencies

with non-negligible magnitudes in the CFR power.

Insight 3: We call the frequencies introduced by the set of cos

terms with argument 2πvk t/(c/f ) in Eq. (1) as primary frequencies

and those introduced by the set of cos terms with argument 2π (vk −
vl )t/(c/f ) as secondary frequencies. We observe from Eq. (1) that

the cosine terms with the argument 2πvk t/(c/f ) are being linearly
summed over all non-zero-speed paths reflected from each user.

This observation leads to our third insight: whether a user performs

a given gesture in solitude or simultaneously with other users, in

both settings, his/her movements introduce the same set of primary

frequencies in the aggregate CFR power.WiMU leverages this insight

to generate virtual samples for any desired combination of gestures

by first extracting the primary frequencies from the aggregate

CFR power of the individually collected real training samples of

the gestures in that combination, and then aggregating them. The

frequencies in the resulting virtual sample are very similar to the

frequencies in a real sample that would result if real users performed

that desired combination of gestures simultaneously.

4 WIMU – OVERVIEW

Next, we give an overview of WiMU’s modules and describe how

they interact to perform multi-user gesture recognition. Figure 1

shows WiMU’s block diagram.
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Figure 1: Block diagram of WiMU

1) Denoising: The denoising module removes the noise from

the CSI-streams of both training and test samples. It takes the

S × NTx × NRx raw CSI-streams as input and converts each CFR

value in each stream into CFR power by multiplying that value

with its complex conjugate. Next, it applies principal component

analysis based denoising technique, proposed in [30, 32], on these

streams and gets S × NTx × NRx new streams, called principal

component streams. As demonstrated in [30, 32], the third stream

has the highest human movement signal to noise ratio. Therefore,

we use the third principal component stream for further processing,

and call it the denoised-stream. As noise removal from CSI-streams

is a well-studied problem in literature, we do not provide more

details on the denoising module in the rest of this paper, and refer

interested readers to [30, 32].

2) Frequency Extraction: This module extracts primary frequen-

cies from training samples performed individually by only a single

user. It takes the denoised-stream of any given training sample

as input and slides a window of short time-width over it in small

steps. At each window step, it applies short time fourier transform

(STFT) on the portion of the denoised-stream covered by the win-

dow in that step, and selects all frequencies with non-negligible

magnitudes. Next, it determines which of the selected frequencies

are primary and which are secondary, and stores the values of the

primary frequencies at each window step for the given training

sample in a database. This module also generates and stores a coarse

frequency-model of the gesture from each training sample. This

module is the only module that processes the training samples. All

modules that we will discuss next are used when users perform

gestures simultaneously at runtime.

3) Gesture Segmentation: This module determines the start and

end times of each gesture in a set of simultaneously performed ges-

tures at runtime. It takes the denoised-stream at runtime as input
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and continuously slides a window of short time-width over it. At

each window step, it applies STFT and counts the number of fre-

quencies with non-negligible magnitudes. As soon as it sees a rapid

increase/decrease in the number of such frequencies, as per Insight

2 from Section 3.2, it declares that a gesture has started/ended. If the

number of gestures in a set of simultaneously performed gestures

is Na ≥ 1, then as soon as the last of the Na users finishes his/her

gesture, this module outputs Na pairs of times, one pair for each

gesture. The first item in any given pair is the start time of a gesture

and the second item is the end time of that gesture. With each pair,

this module also outputs a coarse frequency-model of the gesture

associated with that pair.

4) Gesture Combination Selection: To explain the need for this

module, consider an example where six users simultaneously per-

form gestures and each user can perform any of five predefined

gestures. The number of combinations in which these six users

can perform gestures is 56 = 15625. This is very large and can

lead to low gesture recognition accuracy. Thus, for any given test

sample containing a set of simultaneously performed gestures, we

must identify fewer but plausible combinations, which is what this

module outputs. It takes as input the coarse frequency-models of

the Na gestures outputted by the gesture segmentation module,

compares each model against the frequency-models of each gesture

outputted by the frequency extraction module, and eliminates the

implausible combinations.

5) Virtual Sample Generation: This module generates virtual

samples for each combination of gestures outputted by the combi-

nation selection module. For each gesture in a given combination

of gestures for which virtual samples are desired, this module takes

the primary frequencies at each window step from a real sample of

that gesture as input. It slides a window of the same time-width as

in the frequency extraction module over the duration of the virtual

sample. At each window step, as per Insight 3, it inserts the primary

frequencies from the appropriate windows of the real samples of all

those gestures that should be present in the virtual sample at that

window step. At each step, it also inserts the secondary frequencies.

The output of this module is a sequence of sets of frequencies, one

at each window step, for the duration of the virtual sample. These

sets are very similar to the sets of frequencies that would be present

in a denoised-stream resulting from real users performing the given

combination of gestures.

6) Gesture Recognition: This module takes as input all virtual

samples and the denoised-stream between the start time of the first

gesture and the end time of the last gesture. It slides a window of

same time-width on this denoised-stream, applies STFT at each

window step, and selects the set of all frequencies that have non-

negligible magnitudes. Next, it compares the frequencies in the

resulting sequence of sets with the frequencies in the sequence of

sets from each virtual sample, and as per Insight 1, declares the

denoised-stream to contain that combination of gestures whose

virtual samples achieve the highest match.

5 FREQUENCY EXTRACTION

In this section, we describe how WiMU extracts the primary fre-

quencies from any given training sample of duration ttr performed

individually by a single user. For this, WiMU slides a window

of width w seconds over the denoised-stream in small s second

steps, where w = 200ms and s = 5ms in our implementation. At

each window step, it applies an nFT point STFT, and obtains a vec-

tor containing the magnitudes of frequencies. We represent the

frequency-vector obtained at the jth window step with Fj , where

j ∈ [0, �(ttr −w)/s�]. The key challenge here is to determine which

frequencies in any given frequency-vector are primary and which

are secondary. To facilitate distinguishing between these two types

of frequencies, we set nFT equal to the CSI sampling rate so that

each value in the frequency-vector covers a range of 1Hz. In our

implementation, as our sampling rate is ≈1kHz, we used nFT = 1024.

A 1024 point STFT results in a frequency-vector of length 512. As

human movements do not introduce frequencies >300Hz in the

aggregate CFR power [32], WiMU keeps the first 300 values and

discards the remaining because at 1kHz CSI sampling rate, the

remaining values cover the frequency range of ≈300Hz to 500Hz.
Thus, the length of each Fj is 300. Next, we describe how WiMU

processes each frequency-vector Fj to determine which frequencies

in it are primary and which are secondary.

5.1 Primary / Secondary Frequency Separation

As per Eq. (1), if the number of paths whose lengths change at

different rates due to a human movement is p, then that human

movement introduces p primary frequencies and
(p
2

)
secondary

frequencies in the aggregate CFR power; thus, p+
(p
2

)
frequencies in

total. WiMU uses this relationship between p and the total number

of frequencies to determine the number of primary frequencies in

any given frequency-vector Fj . More specifically, it first compares

the magnitudes of all frequencies in Fj with a baseline threshold,

Tbl, to filter out the frequencies that appear due to leftover noise,

and then counts the number of peaks in Fj that have magnitudes

>Tbl. Next, it uses bisection search to find the value of p for which

p+
(p
2

)
is closest to this count and uses this value of p as an estimate

of the number of primary frequencies in Fj . We will describe how

WiMU automatically calculates the value of Tbl in Section 5.3.

Having estimated the number of primary frequencies, WiMU

next determines which frequencies in Fj are primary and which

are secondary. For this, it first selects p +
(p
2

)
frequency values

corresponding to the peaks with the highest magnitudes in Fj and

then performs
(p+(p2)

p

)
iterations. In each iteration, it selects a unique

combination of p frequency values as a potential set of primary

frequencies and the remaining
(p
2

)
frequency values as a potential

set of secondary frequencies, and calculates a penalty score for this

pair of sets. After completing all iterations, it selects the pair of sets

with the lowest penalty score as the correct sets of primary and

secondary frequencies in the given Fj .

To calculate the penalty score for any given pair of potential sets

of primary and secondary frequencies, WiMU first calculates the

absolute pairwise difference between all p frequency values in the

given set of primary frequencies, and then sorts the resulting
(p
2

)
difference values. We represent these sorted

(p
2

)
difference values

as a vector V. Let Ṽ be the vector comprising sorted
(p
2

)
values in

the given set of secondary frequencies. Next, WiMU calculates the

distance between these two vectors and assigns this distance as the

penalty score to the given pair of sets. The motivation behind using

this distance as the penalty score is that if all frequencies in the

given set of primary frequencies are indeed primary, then as per Eq.
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(1), the
(p
2

)
pairwise frequency difference values calculated from it

will be almost the same as the
(p
2

)
observed frequency values in the

given set of secondary frequencies, resulting in penalty close to 0.

WiMU essentially performs exhaustive search to distinguish

between primary and secondary frequencies. This makes the fre-

quency extraction module computationally the most expensive

module of WiMU. Fortunately, this module is executed offline and

only once at the time of acquiring training samples. The compu-

tational complexity of this module, therefore, does not impact the

runtime gesture recognition speed of WiMU.

5.2 Coarse Frequency-Models of Gestures
As per Insight 1 from Section 3.2, a gesture can be coarsely mod-

elled by quantifying how much of each frequency does this gesture

introduce in the CFR power. WiMU generates coarse frequency-

models of each gesture from each of its training samples. It gener-

ates the model from any given training sample of duration ttr as∑ �(ttr−w )/s �
j=0 Fj/�(ttr −w)/s�. The summation term quantifies how

much of each frequency does this gesture introduce in the CFR

power. As the durations of different training samples can be differ-

ent, we normalize the summation with the number of window steps

over which the frequency-vectors are summed. Let Np represent

the number of predefined gestures that WiMU should recognize,

and let sk represent the number of training samples that WiMU has

for the kth predefined gesture, where 1 ≤ k ≤ Np . We represent

the coarse frequency-model generated from the l th training sample

of the kth predefined gesture withMtr
k,l

, where 1 ≤ l ≤ sk .

5.3 Setting the Baseline Threshold
WiMU uses the baseline threshold, Tbl, to determine whether any

given frequency in any given frequency-vector is due to a human

movement or just noise. As per Insight 2, in the absence of move-

ments, the magnitudes of all frequencies in the frequency-vector

should theoretically be 0. However, in practice, frequencies exhibit

small non-zeromagnitudes. Keeping this in view, a simpleway to set

the value ofTbl is to identify a portion in the given denoised-stream

where no user performed any movement, and use the magnitudes

of frequencies in the frequency-vectors for this portion to set Tbl.
In the absence of any human movements, the magnitudes of all

frequencies are close to 0, and thus relatively uniformly distributed.

In the presence of human movements, the magnitudes of some

frequencies are higher than the others, and thus non-uniformly

distributed. Consequently, the coefficient of variation (cv) of the
values in any given frequency-vector is much smaller in the absence

of humanmovements than in the presence. In our data set, we never

observed cv > 0.1 in the absence of human movements and < 0.5

in the presence. Thus, cv < 0.1 for any frequency-vector is a robust

indicator that the time duration over which that frequency-vector

was obtained did not have any movements.

Based on the discussion above, to set Tbl, WiMU continuously

looks for 10 consecutive frequency-vectors with cv < 0.1. Every

time it finds them, it calculates the mean, μ, and standard deviation,
σ , of all values in these 10 consecutive frequency-vectors, and sets

the threshold using the three-sigma rule as Tbl = μ + 3σ . To ensure

that each training sample has a portion in the denoised-stream that

WiMU can use to calculate Tbl, we recommend that the user stay

stationary for about a second before providing each sample.

6 GESTURE SEGMENTATION
In this section, we describe how WiMU processes the denoised

stream at runtime to detect that some users have performed a set of

gestures simultaneously and to determine the start and end times of

each gesture in that set. For this, WiMU performs three steps. In the

first step, it identifies the start time and the end time of the entire

set. In the second step, it selects the portion of the denoised-stream

between these start and end times and processes it to identify all

those times at which gestures either started or ended. If the set

of simultaneously performed gestures comprises Na ≥ 1 gestures,

then in this step, it identifies Na start times and Na end times. In

the last step, it pairs up the start times with end times such that

each of the resulting Na pairs contain the start and end times of

one of the Na gestures. Next, we describe these three steps in detail.

6.1 Detecting a Set of Simultaneous Gestures
To detect the start and end time of an entire set of simultaneously

performed gestures,WiMU continuously slides the samew = 200ms

window in s = 5ms steps on the denoised stream at runtime. At each

step, it obtains a frequency-vector and calculates its cv . As long
as no user performs any gesture, cv stays below 0.1 (see Section

5.3). As soon as cv exceeds 0.1 for 10 consecutive window steps,

WiMU takes this as an indication that some user has started a

gesture, and records the time at the middle of the window in the

first of these 10 steps as the start time. It continues to calculate cv
at subsequent window steps and as soon as cv falls back below 0.1

for 10 consecutive window steps, WiMU takes this as an indication

that all users have completed gestures, and records the time at the

middle of the window in the first of these 10 steps as the end time.

6.2 Detecting the Gesture Start & End Times
While we observe a rapid increase (decrease) in cv when the first

gesture starts (last gesture ends), the jumps in cv are not prominent

for the gestures that start and end in-between. The reason being that

after the start of the first gesture, the frequencies introduced by the

start of the subsequent gestures increase themeans of the frequency-

vectors but do not increase the standard deviations significantly.

Thus, although the cv based method is robust in detecting the

start of the first gesture and the end of the last, it is not reliable in

detecting the starts and ends of the gestures in-between.

Leveraging the Insight 2, to detect gesture start/end,WiMU looks

for rapid increase/decrease in the number of frequencies with mag-

nitudes >Tbl in frequency-vectors. WiMU continuously recalculates

Tbl at runtime from the non-active portions of the denoised stream,

as described in Section 5.3. WiMU takes the portion of the denoised

stream between the start and end times calculated in Section 6.1,

slides the samew = 200ms window in s = 5ms steps, and obtains

Fj at each step, where j ∈ [0, �(tt −w)/s�] and tt is the duration
between the start and end times calculated in Section 6.1. As the

frequencies in F0 are introduced only by the first user that just

started a gesture, WiMU counts the number of frequencies with

magnitudes >Tbl in F0, and uses this count as an estimate of the

number of frequencies each user’s movements introduce in the

aggregate CFR power. We represent this count with nF0 . WiMU

estimates nF0 instead of using a constant value for it because it

can vary across environments depending on the number of strong

reflecting objects in that environment.
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After estimating nF0 , WiMU sequentially processes each

frequency-vector from F1 through F �(tt−w )/s � . In processing any Fj ,
WiMUfirst calculatesnFj , the number of frequencies in Fj withmag-

nitudes >Tbl. Next, it compares nFj with an exponentially weighted

moving average, μFj−1, where μ
F
j−1=(μFj−2 + nFj−1 )/2, and μF0=nF0 .

Based on the number of starts and ends of gestures that WiMU has

detected from the frequency-vectors before Fj , let i represent the
number of gestures that WiMU estimates to be currently being per-

formed when it starts processing Fj . If nFj−μFj−1>0.9i×nF0 , WiMU

takes this rapid increase in the number of frequencies in Fj to be

the indication of the start of a new gesture, and records the index j

of this Fj as a gesture start time. Similarly, if μFj−1−nFj <0.9i−1×nF0 ,
WiMU takes this rapid decrease in the number of frequencies to

be the indication of the end of an existing gesture, and records the

index j as a gesture end time.

The motivation behind comparing nFj with μFj−1 instead of nFj−1
is to avoid erroneous detections due to abrupt changes in the num-

ber of frequencies at the times when gestures start and end. We

empirically determined that the weighting parameter of 50% in cal-

culating μFj−1 results in high detection accuracy. Note that after the

start of any new gesture, within four window steps, i.e., 20ms, the

contribution of the number of frequencies in the frequency-vectors

before the start of this gesture to the exponentially weighted mov-

ing average falls down to just 0.54 = 6.25%, and the average reaches

the number of frequencies in the frequency-vectors after the start

of the new gesture. Consequently, WiMU can distinguish between

one gesture’s start and another gesture’s end, and vice versa, as

long as the two events are separated by just 20ms. To distinguish

between two consecutive starts (ends), due to the 5ms window step,

WiMU requires them to be separated by just 5ms. In practice, a

user starting a gesture and another ending a gesture with a time

difference of less than 20ms, or two users starting (ending) gestures

with a time difference of less than 5ms are all rare events.

The motivation behind comparing the difference between nFj

and μFj−1 with 0.9i × nF0 instead of nF0 to detect the start of new

gestures is that when some users are already performing gestures,

some of the frequencies that a new gesture introduces in the aggre-

gate CFR power may already be present in it due to the gestures

already being performed. Thus, if WiMU were to always look for

a jump of nF0 , it may miss the start of some gestures. The same

motivation lies behind comparing the difference between μFj−1 and
nFj with 0.9i−1 ×nF0 to detect the end of an existing gesture. In the

rare case when the number of gesture starts that WiMU detects are

fewer than the number of gesture ends, it reprocesses all frequency-

vectors F1 through F �(tt−w )/s � again and looks for gesture starts

(but not ends this time) using a reduced multiplication factor for

nF0 from 0.9i to 0.85i . It continues to reduce the multiplication

factor in the steps of 0.05 and reprocesses all frequency-vectors

until the number of gesture starts that it detects become equal to

the number of gesture ends. Similarly, if the number of gesture ends

that it detects are fewer than the number of gesture starts, it uses

the same approach of reducing the multiplication factor in the steps

of 0.05 and detecting the gesture ends again. Finally it passes Na

indices corresponding to Na gesture starts and another Na indices

corresponding to Na gesture ends to the third step, described next.

6.3 Pairing the Gesture Start & End Times
In this step, WiMU pairs up the Na end times with the Na start

times such that each of the resulting Na pairs contains the start

time and end time of a unique gesture. To do this, WiMU leverages

the Insight 1 from Section 3.2 that each gesture introduces a unique

set of frequencies in the aggregate CFR power. Each time WiMU

detects the start of a new gesture, it quantifies the effect of this

gesture on each frequency in the aggregate CFR power, and stores

this information as a coarse frequency-model. Every time it detects

the end of a gesture, it again quantifies the effect of the end of

the gesture on each frequency, and compares the resulting coarse

frequency-model with the frequency-models that it generated at

gesture starts. It pairs up the end time of this gesture with that start

time whose frequency-model matches this frequency-model most.

Recall that on completing step 2 (described in Section 6.2), WiMU

obtains 2Na indices of frequency-vectors: Na corresponding to

gesture start events andNa corresponding to gesture end events. Let

ji represent the i
th index after these 2Na indices are chronologically

arranged, where 1 ≤ i ≤ 2Na and ji ∈ [0, �(tt − w)/s�]. WiMU

sequentially processes the events at these 2Na indices, starting at

j1 and sequentially working its way to j2Na
. Next, we describe how

WiMU processes the event at any arbitrary index ji .
If the event at the index ji is a gesture start, WiMU creates a

frequency-model,Ms
ji
, that quantifies the effect of this new gesture

on each frequency in the aggregate CFR power as:

Ms
ji
=

(∑ji+1−1
j=ji

Fj
)
/(ji+1 − ji ) −

(∑ji−1
j=ji−1

Fj
)
/(ji − ji−1) (2)

The second summation quantifies the contribution of all gestures

that were being performed before the new gesture started at ji while
the first quantifies the contribution of all those plus the new. As the

indices are not equally spaced in time, we normalize the summations

with the durations over which they are summed. WiMU insertsMs
ji

into a setH that contains frequency-models of those gestures for

which WiMU has detected starts but has not yet detected ends.

Similarly, if the event at the index ji is a gesture end, WiMU

creates a frequency-model, Me
ji
, that quantifies the effect of the

gesture that just ended on each frequency in the CFR power.

Me
ji
=

(∑ji−1
j=ji−1

Fj
)
/(ji − ji−1) −

(∑ji+1−1
j=ji

Fj
)
/(ji+1 − ji ) (3)

Next, it pairs up this index ji with that index jl that minimizes the

magnitude ofMe
ji
−Ms

jl
, whereMs

jl
∈ H . Finally, it removesMs

jl
from the setH , and returns the ordered pair (jl , ji ). This ordered
pair contains the start and end times of a unique gesture among

the Na gestures. Along with this ordered pair, it also returns an

aggregate coarse frequency-model,MU
jl↔ji

= (Ms
jl
+Me

ji
)/2, of the

unknown gesture associated with (jl , ji ).

7 GESTURE COMBINATION SELECTION

Recall that Np represents the number of predefined gestures. If the

number of gestures that the users performed simultaneously is Na ,

then these gestures could be any of the N
Np

a combinations of the

Np gestures. In other words, the gesture associated to each pair

of start and end times can be any of the predefined Np candidate

gestures. The objective of this module is to reduce the number of

these candidate gestures for each pair.
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To reduce the number of candidates for any pair (jl , ji ), WiMU

first max-normalizesMU
jl↔ji

associated with this pair by dividing

it with max(MU
jl↔ji

). Let us represent any max-normalized coarse

frequency-model M with M̂. Next, it matches M̂
U
jl↔ji with max-

normalized coarse frequency-models of each predefined gesture,

calculated by the frequency extraction module, and eliminates all

those gestures with which the match is insignificant. More specifi-

cally, for any predefined gesture k with sk training samples, if the

value of | |M̂U
jl↔ji − 1

sk

∑sk
l=1

M̂
tr
k,l | |2 > 0.5

√
300, WiMU removes

that gesture k from the set of possible candidates. The motivation

behind comparing with
√
300 is that as the length of any frequency-

model is 300, the largest magnitude of the difference between any

two max-normalized coarse frequency-models can’t exceed
√
300.

The motivation behind multiplying
√
300 with 0.5 is to discard all

those predefined gestures that have less than 50% match with the

gesture associated with (jl , ji ). Based on the shortlisted candidate

gestures for each of the Na pairs of start and end times, WiMU

lists all the combinations of gestures that are possible, and passes

this list to the virtual sample generation module to create virtual

samples for each combination. A combination is simply a list of all

the Na pairs with a candidate gesture listed with each pair.

8 VIRTUAL SAMPLE GENERATION

To generate a virtual sample for any given combination, WiMU

performs three steps. In the first step, for each of the Na gestures

listed with the Na pairs in that combination, it picks a randomly

selected training sample of that gesture. In the second step, for each

pair, if the duration represented by the pair does not match with the

duration of the training sample that WiMU picked for the gesture

listed with that pair, WiMU adjusts the duration of the training

sample to match with the duration represented by the pair. In the

last step, WiMU uses the Na duration-adjusted training samples to

generate a virtual sample for the given combination.

8.1 Matching Sample Durations

To make the duration of any given pair (jl , ji ) consistent with the

duration of the training sample that WiMU picked for that pair,

WiMU expands/contracts the training sample. Recall from Section

5 that WiMU already has extracted a set of primary frequencies

from each of the frequency-vectors of this training sample. Let

us represent the jth set of primary frequencies with F j , where

0 ≤ j ≤ �(ttr −w)/s� and ttr is the duration of this training sam-

ple. Let Dp = ji − jl represent the duration of the pair (jl , ji ) and
Dtr = �(ttr−w)/s�+1 represent the duration of the training sample

in terms of the number of window steps. If Dp > Dtr, WiMU needs

Dp −Dtr more sets of primary frequencies, which it obtains by first

replicating every
((Dp − Dtr)/Dtr

) th
set and then chronologically

renumbering the indices of all sets (the index of set F j is j). Simi-

larly, if Dp < Dtr, WiMU needs to remove Dtr −Dp sets of primary

frequencies, which it does by removing every
((Dtr − Dp)/Dtr

) th
set and renumbering the indices of the remaining sets.

Expanding/contracting a training sample implies that the gesture

was performed at a slower/faster rate, which in turn implies that the

speeds of signal paths reduced/increased, respectively. Thus, the fre-

quencies in the aggregate CFR power must be decreased/increased

depending on the extent of expansion/contraction of the training

sample. To do this, WiMU multiplies each value in each of the Dp

sets of primary frequencies with t tr/tp , where tp is the duration

represented by the pair (jl , ji ) in terms of absolute time, and is equal

to (Dp − 1)s +w .

8.2 Generating a Virtual Sample

Recall from Section 6.3 that j1 = 0 and j2Na
= �(tt − w)/s� are

the indices of the frequency-vectors where the first gesture started

and the last gesture ended, respectively. Thus, the virtual sample

should also have �(tt−w)/s�+1 frequency-vectors. Let Fj
B
represent

the jth binary valued frequency-vector that WiMU will generate,

where 0 ≤ j ≤ �(tt − w)/s�. Unlike a regular frequency-vector

that contains the magnitudes of frequencies in the CFR power, a

binary valued frequency-vector only indicates whether a frequency

is present in the CFR power or not by setting the value in the vector

corresponding to that frequency 1 or 0, respectively.

To generate any arbitrary F
j
B
, where 0 ≤ j ≤ �(tt −w)/s�, WiMU

first sets all 300 values in it to 0, and then processes each of the

Na pairs. In processing any given pair (jl , ji ), WiMU first checks

whether F
j
B
lies in the range covered by (jl , ji ) by checking if jl ≤

j < ji . If yes, it retrieves the set of primary frequencies F j−jl from
the training sample of the gesture associated with the pair (jl , ji ),
and sets all values in F

j
B
corresponding to the frequencies in this set

to 1. In other words, WiMU inserts all primary frequencies from the

appropriate location of the training sample of the gesture associated

with this pair into F
j
B
. After processing all Na pairs, as per Insight 3

from Section 3.2,WiMU has inserted all primary frequencies into F
j
B

from all those gestures that should be present in the virtual sample

at index j . To insert all secondary frequencies into F
j
B
, WiMU takes

pairwise differences of all primary frequencies that it just inserted

into F
j
B
and sets all values in F

j
B
corresponding to these difference

values to 1. This completes the generation of F
j
B
. After WiMU has

generated all binary valued frequency-vectors, it concatenates them

to obtain a binary matrix of size 300 × �(tt −w)/s� + 1. This binary
matrix is our virtual sample. We use the notation Bv to represent

the binary matrix corresponding to any arbitrary virtual sample.

9 GESTURE RECOGNITION

To recognize the gestures in a given set of simultaneously performed

gestures, WiMU first converts the denoised-stream between the

start and end times of this set, calculated in the gesture segmen-

tation module, into the binary matrix format, represented by Bt .

Next, it compares this matrix with the virtual sample matrices Bv .

For this, WiMU concatenates all frequency-vectors Fj , calculated in

the gesture segmentation module and gets a 300 × �(tt −w)/s� + 1
matrix. Next, it compares each frequency magnitude value in this

matrix with the threshold Tbl. If any frequency magnitude value is

> Tbl, that frequency is present in the aggregate CFR power and

thus, WiMU replaces that value with 1; otherwise, with 0. This

finally results in the desired binary matrix Bt .

To identify the simultaneously performed gestures, WiMU com-

paresBt with all virtual samples of each combination and calculates

a similarity score for each combination. It declares the set of simul-

taneously performed gestures to be comprised of that combination
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that achieves the highest score. To calculate the similarity score for

any given combination, WiMU measures the Jaccard similarity co-

efficient [4, 16] of Bt with each virtual sample of that combination,

calculates the average of all Jaccard coefficients, and assigns this

average as the similarity score to that combination.

The Jaccard coefficient between the two matrices Bt and Bv
is the ratio of the number of frequencies that are present in both

matrices to the number of frequencies that are present in at least

one of them. The motivation behind using Jaccard coefficient is

twofold. First, it ignores those frequencies that are not present in

either the virtual sample or the test sample. This is useful because

such frequencies do not provide any information about the “simi-

larity” between the two samples. Second, the calculation of Jaccard

coefficient is computationally simple: take logical AND of the two

matrices; take logical OR of the two matrices; divide the sum of all

values in the first resultant with the sum of all values in the second.

10 IMPLEMENTATION & EVALUATION

We implemented WiMU on a commodity PC (8 core Intel Xeon

processor, 16GB RAM). We used the tool presented in [15] to ac-

quire CSI measurements in the 5GHz band from an Intel 5300 WiFi

NIC connected with NRx = 3 omnidirectional antennas. We used

NETGEAR R6700 access point (AP) using NTx = 1 omnidirectional

antenna and pinged it every 1ms to achieve a 1000 samples/sec sam-

pling rate. Next, in Sec. 10.1, we describe how we collected samples

for various combinations of gestures. In Sec. 10.2, we compare the

virtual samples generated by WiMU with real samples. In Sec. 10.3,

we evaluate WiMU’s accuracy in detecting the start and end times

of gestures. In Sec. 10.4, we study the extent to which the combi-

nation selection module reduces the number of combinations. In

Sec. 10.5, we evaluate WiMU’s accuracy in recognizing the gestures

performed by up to 6 users simultaneously. In Sec. 10.6, we evalu-

ate the accuracy of WiMU on gestures performed individually, and

compare the results with prior art. In sections 10.7, 10.8, and 10.9,

we study the impacts of user’s height and weight, distance between

users, and static variations in the environment, respectively, on the

accuracy of WiMU. Finally, in Sec. 10.10, we evaluate the latency

of WiMU in processing training and test samples.

10.1 Data Collection

We collected training samples from 10 volunteers, 3 males and 7

females, with ages ranging from 20 to 30, heights from 5’ 5” to 6’ 3”,

and weights from 135lb to 220lb. We assigned them unique IDs, v1
throughv10.We collected samples for six randomly chosen gestures:

open and close door (O), circular arm movement (C), push and pull

arm (P), sit down and stand up (S), kicking (K), and brushing teeth

(B). For gestures O and B, the volunteers did not open and close

an actual door or brush their teeth in real, rather only performed

the movements of doing these gestures. We collected samples in a

25ft×16ft room. The AP and the receiver antennas were placed 5 ft

apart on a table that is situated adjacent to and in the middle of the

25ft wall. The room contains a steel closet, 7 chairs, and 4 tables.

We first asked each volunteer to individually provide 10 samples

for each of the six gestures at random positions of his/her choos-

ing. Next, we collected samples for Na simultaneously performed

gestures, where Na ∈ {2, 3, 4, 5, 6}. For each value of Na , we first

selected three combinations of Na gestures to be performed. Next,

for each combination, we randomly picked Na volunteers, assigned

a gesture to each volunteer, and asked them to pick any positions

of their choosing in the room and provide 30 samples. In the first

15 samples, we asked the volunteers to start their assigned gestures

in parallel on a voice prompt. In the remaining 15 samples, we

assigned a sequence number to each volunteer and instructed them

that the volunteer with sequence number i should start after the

volunteer i − 1 starts but before the volunteer i − 1 finishes.

Table 1 summarizes the combinations of gestures for which we

collected the samples and the IDs of the volunteers that performed

the gestures. Each combination also has an ID. We collected 1050

samples, 600 for gestures performed individually and 450 for ges-

tures performed simultaneously. These 450 samples contain 1800

performances of the six gestures. For each sample in our data set,

we have the manually annotated ground truth values of the number

of gestures in that sample, the names and sequence of gestures, and

the start and end times. The data collection spanned 14 days. On

each day, the location of the furniture was randomly changed to

incorporate the effects of environmental changes into the samples.

ID Na Volunteer IDs and Gestures

C1 2 v4,O v2,O – – – –

C2 2 v2,O v4,S – – – –

C3 2 v2,B v4,K – – – –

C4 3 v3,S v2,S v1,S – – –

C5 3 v2,P v10,C v4,K – – –

C6 3 v2,P v4,B v10,O – – –

C7 4 v5,C v10,C v7,C v3,C – –

C8 4 v10,S v3,P v7,C v5,K – –

C9 4 v3,K v9,K v8,B v2,O – –

C10 5 v6,P v10,P v3,P v7,P v5,P –

C11 5 v3,P v10,S v5,O v6,B v7,B –

C12 5 v4,P v1,B v10,S v8,P v5,K –

C13 6 v8,K v2,K v10,K v5,K v1,K v4,K
C14 6 v1,B v2,B v5,P v10,P v8,K v4,O
C15 6 v4,K v10,K v8,C v2,O v5,C v1,B

Table 1: Combinations of gestures in our data set

10.2 Comparison of Real vs. Virtual Samples

In this section, we study how similar the virtual samples generated

by WiMU for any given combination of gestures are to the real

samples of that combination. To measure this, for each combina-

tion of gestures corresponding to each value of Na in Table 1, we

generated 100 virtual samples and calculated the Jaccard coefficient

between each real sample and the corresponding 100 virtual sam-

ples. For each Na , as we have 3 combinations of gestures with 30

samples per combination, we obtain 3 × 30 × 100 = 9000 Jaccard

coefficient values. Figure 2 plots the CDF of these 9000 values for

each value of Na . We observe from this figure that when Na = 2,

the average Jaccard coefficient between real and virtual samples is
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Figure 2: CDFs of Jaccard coefficients

between real and virtual samples

86%, i.e., on average, the real

and virtual samples, are 86%

similar. As Na increases, the

similarity decreases. However,

even when Na = 6, the av-

erage Jaccard coefficient is >

80%, which is large enough to

enable WiMU to distinguish

across different combinations.
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10.3 Gesture Segmentation Accuracy

To evaluate the gesture segmentation module, we took all 1050

samples and calculated the number of gestures and the start and

end times in each sample using the method described in Section 6,

and compared with the ground truth. Figure 3 plots the percentage

of samples corresponding to each value of Na in which WiMU

calculated the number of gestures correctly. We observe that WiMU

correctly detected the number of gestures in at least 97% of the

samples for any number of simultaneously performed gestures. We

see a minor drop for the parallel started samples compared to the

sequentially started samples because, infrequently, the gesture start

times of some volunteers were so close that WiMU could not either

distinguish between them or generate a reliable frequency-model.
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Figure 3: Percentage of samples with

correctly detected Na
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Figure 4: Difference in detected &

ground truth start & end times

Figure 4 plots the average and standard deviation of the differ-

ence in the start/end times calculated by WiMU and the ground

truth. We see that the average difference lies between just 25ms to

40ms, which is most likely due to the human factor in the manually

annotated ground truth. Nonetheless, considering that a gesture

generally takes more than a second to be performed, such a small

difference is negligible. Thus, WiMU is robust in identifying the

number of gestures and start and end times for at least six simulta-

neously performed gestures (and probably more, but we have not

yet evaluated WiMU on more than six).

10.4 Combination Selection Performance
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R
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Figure 5: Ratio of 6Na with the

number of selected combinations

For each sample of each combina-

tion in our data set with Na ges-

tures, we calculated the ratio of

6Na (i.e., the number of all possi-

ble combinations) with the num-

ber of combinations outputted by

the combination selection module

for that sample. Figure 5 shows

a box plot for each value of Na ,

where each box plot is obtained

from 90 ratio values (recall that our data set has 90 samples for each

value of Na ). We observe from this figure that the combination se-

lection module reduces the number of combinations by an average

of at least one order, and the order of reduction increases with the

increase in Na .

10.5 Gesture Recognition Accuracy

Recall that we collected samples for 15 combinations, with Na rang-

ing from 2 to 6. To calculate the accuracy of WiMU, we classified

each sample in each combination 50 times, each time generating

virtual samples using a different set of randomly selected training

samples. In generating virtual samples to classify any given sample,

we ensured that the volunteer whose training samples WiMU used

is not among the volunteers who provided the given sample.

Figure 6 plots the average accuracies of WiMU for each of the 15

combinations calculated using the samples where the volunteers

started the gestures in parallel. Figure 7 plots the same using the

samples containing sequentially started gestures. Each bar in these

figures for any given combination of Na gestures shows the per-

centage of classification rounds in whichWiMU correctly identified

all Na gestures out of the 750 rounds of classification. As the vol-

unteers randomly chose positions when providing samples and as

the furniture was moved across days, the results in these figures

take into account the changes in user’s positions and environment.

2 2 2  3 3 3  4 4 4  5 5 5  6 6 6
Na

86
88
90
92
94
96

R
ec

og
ni

tio
n 

Ac
cu

ra
cy

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

Figure 6:WiMU’s average accuracy for

parallel overlapping gestures
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Figure 7:WiMU’s average accuracy for

sequential overlapping gestures

WiMU achieved an average accuracy of 95.0, 94.6, 93.6, 92.6, and

90.9% in recognizing 2, 3, 4, 5, and 6 simultaneously and sequentially

performed gestures, respectively. The accuracy was about 0.81%

lower when the gestures were started in parallel. The slight loss

in accuracy for the parallel started gestures is due to the slightly

lower percentage of their samples in which WiMU’s gesture seg-

mentation module correctly detected the number of gestures. While

the average accuracy of WiMU decreases as Na increases, the rate

of decrease is very low, and the average accuracies that WiMU

achieves even for Na = 6 are >90%.

Figure 8 plots the percentage of classification rounds in which

WiMU correctly identified at least k gestures, where 1 ≤ k ≤ Na .

Each set of bars corresponding to each value of Na is made using

the classification results obtained after doing 50 rounds of classi-

fications of all 90 samples in our data set that have Na simultane-

ously performed gestures. Consider the set of bars corresponding to

Na = 6. We observe from this figure that while WiMU identifies all

6 gestures correctly 90.5% of the times, it identifies, for example, at

least 3 gestures correctly 94.4% of the times. This shows that even

in the cases where WiMU does not identify all gestures correctly, it

still identifies some of them correctly.
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Figure 8: Average accuracies of WiMU in recognizing at least k gestures

correctly, where 1 ≤ k ≤ Na
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10.6 Comparison with Prior Art

Next, we study how WiMU performs on gestures performed indi-

vidually and compare its accuracy with prior art. To measure the ac-

curacy of WiMU on individually performed gestures, we calculated

10-fold cross validation accuracy of WiMU on the 600 individually

performed samples. Figure 9 shows the confusion matrix for the

six gestures. We observe from this figure that WiMU classified ges-

tures with a high accuracy of 95.5% on our data set. This accuracy
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Figure 9: Confusion matrix for indi-

vidually performed gestures

achieved by WiMU on indi-

vidually performed gestures

is at par with prior WiFi

based systems. Some promi-

nent WiFi based gesture and

activity recognition systems,

namely E-eyes [34], CARM

[32], WiGest [6], and WiAG

[30] reported average accura-

cies of 96%, 96%, 96%, and 92%,

respectively.

10.7 Impact of Height and Weight

The motivation behind studying the impact of user heights and

weights on the accuracy of WiMU is to establish whether WiMU’s

accuracy is impacted by physiological properties of human body.

The two subfigures in Figure 10 plot the accuracies of WiMU for

users sorted with respect to their heights and weights, respectively.

Each bar in the two figures for a user with any given height/weight

shows the percentage of samples of that user correctly classified by

WiMU during the 10-fold cross validation discussed in Section 10.6.

We do not observe any apparent trends in WiMU’s accuracy with

changes in volunteers’ heights and weights. This shows that the

physiology of the user does not have any significant impact on the

accuracy of WiMU.
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Figure 10: Impact of users’ heights and weights on WiMU’s accuracy

10.8 Impact of Distance Between Users

Next, we study how far apart users have to be for WiMU to recog-

nize their simultaneously performed gestures. We collected more

samples from our volunteers using Na = 3, i.e., three users per-

formed gestures simultaneously. We asked the volunteers to per-

form combinations C4, C5 and C6 while standing at a distances of

1.5, 2, 2.5, 3, and 4 feet from each other. At each distance and for

each configuration, we collected 15 samples. Figure 11 plots the

accuracy in each of the three configurations at the five distance

values averaged over 100 runs of evaluations, where in each run, we

used a different set of virtual samples as the training samples. We

observe from this figure that when the volunteers are very close to

each other, i.e., just 18 inches apart, WiMU’s accuracy is relatively

low, and improves rapidly as the distance increases. The relatively

low accuracy at smaller separations can be attributed to volunteers

1) blocking each others’ signal reflections, and 2) finding it difficult

to properly perform gestures due to close proximity.
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Figure 11: WiMU’s average accuracy

for different distances between users
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Figure 12: WiMU’s average accuracy

in different scenarios

10.9 Impact of Environmental Changes

In this section, we evaluate the performance of WiMU when the

number and position of stationary objects in an environment

change across samples. For this, we collected yet another set of

samples from our volunteers, again keeping Na = 3 and asking the

volunteers to perform combinations C4, C5, and C6 in five different

scenarios while standing at a distance of 3ft from each other. In

the first scenario, we collected 15 samples for each of these three

combinations using the default setup of our lab, i.e., containing 7

chairs and 4 tables, neatly placed at their usual locations. In the

second scenario, we again collected 15 samples for each of the three

combinations, this time randomly scattering the 7 chairs through-

out the lab. In the third scenario, we introduce a 6ft by 3ft steel

closet in the room to add strong reflected components to the signal

arriving at the receiver. Figure 13 plots the difference between the

CFR power of each subcarrier in scenario 3 and the CFR power of

the corresponding subcarriers in scenario 1. We observe from this

figure that adding the steel closet changes the CFR power of sub-

carriers by up to 25dBm. This happens due to the strong reflected

signal component that the steel closet adds, which constructively

or destructively interferes with the existing signal components. In
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Figure 13: Difference in CFR powers

of subcarriers across scenarios 1 & 3

the fourth scenario, we placed

a 6ft by 6ft room divider made

of cardboard in front of one

of the volunteers, such that it

blocked the line of sight path

between the volunteer and the

receiver. In the fifth scenario,

we placed the steel closet in

front of one of the volunteers,

such that it blocked the line of

sight path between the volun-

teer and the receiver.

Figure 12 plots the average accuracy for each of the three con-

figurations in the five scenarios. We observe from this figure that

WiMU achieves almost similar accuracy in the first four scenar-

ios. However, in the fifth scenario, the average accuracy drops by

about 6% due to the loss of the line of sight component. We also ob-

serve that in scenario four, where a room divider was used to block

the line of sight component, the impact on accuracy is negligible

because WiFi signals propagate well through cardboard.



MobiSys ’18, June 10–15, 2018, Munich, Germany Raghav H. Venkatnarayan, Griffin Page, and Muhammad Shahzad

10.10 Processing Latency

WiMU took an average of 2 minutes and 23.4 seconds to process

each training sample using the method described in Section 5. Re-

call that this relatively large processing time is not problematic

because it is a one time cost incurred at the time of setting up

WiMU, and does not impact WiMU’s runtime performance. WiMU

took an average of 1.1, 1.6, 2.1, 2.5, 2.8, and 3.1 seconds to complete

a classification round to recognize all gestures in a sample with 1, 2,

3, 4, 5, and 6 simultaneously performed gestures, respectively. Each

classification round involved gesture segmentation, gesture combi-

nation selection, virtual sample generation, and gesture recognition,

as described in Sections 6, 7, 8, and 9, respectively. We believe that

by leveraging the GPU based parallelization that is now available

on household computers, we can bring down WiMU’s time to com-

plete each classification round to under a second. Current voice

based assistants experience a latency upwards of 1.5 seconds [2].

11 LIMITATIONS

While this paper is the first work that formally addresses the chal-

lenging problem of multi-user gesture recognition using WiFi, it

is by no means the last, as our work has limitations that still need

to be addressed before WiFi based multi-user gesture recognition

systems can be used in practice. Next, we describe these limitations.

Background Movements: Currently, WiMU assumes that all ges-

tures in any set of simultaneously performed gestures are pre-

defined. Recall that a predefined gesture is a gesture for which

WiMU has training samples performed by a real user. In case one

or more users perform gestures or activities that are unknown to

WiMU, such as household chores, while one or more other users

perform predefined gestures, WiMU cannot recognize the prede-

fined gestures due to the interference from the users performing

the background gestures. The authors of WiSee [25] made a prelimi-

nary effort towards eliminating the impact of such interfering users.

In future, we plan to extend the preliminary approach presented

in [25] and augment WiMU with it to enable multi-user gesture

recognition in the presence of background movements.

Machine LearningMethods: The simple Jaccard similarity coeffi-

cient based method that we used in this paper to compare test sam-

ples with virtual samples is relatively a less sophisticated machine

learning method used for classification. A significantly more so-

phisticated machine learning based classification technique, such as

support vector classification, would result in a significantly higher

accuracy and robustness. Our use of the simpler technique in this

paper was motivated by two factors. First, we primarily wanted to

study the performance of our proposed approach of generating vir-

tual samples. Had we used a more sophisticated machine learning

method, it would have been difficult to determine who to attribute

the good observed accuracy to: the virtual sample generation tech-

nique or the machine learning method. Second, the sophisticated

machine learning techniques are computationally more expensive,

and would lead to larger processing latency compared to that re-

ported in Section 10.10. Now that we have demonstrated thatWiMU

achieves good accuracy with the simpler machine learning meth-

ods, albeit in a relatively controlled environment, in future, we plan

to do a parallelized cloud based implementation of WiMU with

one of the more sophisticated machine learning methods to further

improve its accuracy and robustness.

Sensitivity to User Orientation: If a user performs a gesture at

runtime in an orientation that is significantly different from any

of the orientations in which the training samples were collected,

WiMU’s accuracy will suffer. To address this challenge, we plan

to leverage our recent work, reported in [30], that specifically ad-

dresses the problem of recognizing gestures in arbitrary orienta-

tions, albeit for a single user. We will augment WiMU with the

approach in [30] to make it agnostic to orientations of the users.

Gesture Association with Users:While WiMU recognizes simul-

taneously performed gestures, and if some of the users perform the

same gesture, even tells how many users performed that gesture,

it cannot yet associate gestures with users. Enabling WiMU to do

so is particularly challenging because it requires user localization

and user identification, which are not only challenging tasks but

also complete projects in themselves. We hope that this work will

spark interest of research community, and in near future, we will

see work that can not only recognize simultaneously performed

gestures but can also associate them to individual users.

Similar Gestures: While a human observer can distinguish be-

tween a yawn and a gesture where a user lifts both arms up, it is

difficult for WiMU to distinguish between them. In general, it is

difficult for any WiFi based system to distinguish between gestures

that give rise to similar movements of body parts. Consequently,

just like any other WiFi based gesture recognition systems, WiMU

also requires the gestures to be sufficiently different from each other

in terms of the movements of body parts.

Contiguous Gestures of Individual Users: While WiMU can

recognize the gestures performed by multiple users simultaneously,

for its gesture segmentation module, it requires that each user

among the multiple users take a brief pause before and after per-

forming his/her gesture. If any given user performs multiple prede-

fined gestures contiguously, WiMU’s gesture segmentation module

cannot segment his/her gestures. Segmenting gestures from a set

of contiguously performed gestures by any given user is also a

challenging problem. To address this problem, in our future work,

we plan to explore and leverage the hidden Markov chains based

solutions that the speech processing community has developed to

segment words in spoken sentences.

12 CONCLUSION

In this paper, we proposed WiMU, a theoretically grounded WiFi

based system that recognizes simultaneously performed gestures.

The key novelty of WiMU lies in the idea of generating virtual

samples from individually performed gestures such that the virtual

samples are very similar in properties to the real samples obtained

from multiple users performing gestures simultaneously. The key

technical depth of WiMU lies in the theoretically grounded designs

of its modules that leverage insights from Eq. (1). We implemented

WiMU using commodity WiFi devices and demonstrated that it

recognizes 2, 3, 4, 5, and 6 simultaneously performed gestures with

average accuracies of 95.0, 94.6, 93.6, 92.6, and 90.9%, respectively.
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