Enhancing Indoor Inertial Odometry with WiFi

Raghav H. Venkatnarayan, Muhammad Shahzad NC State University, Raleigh, USA

UbiComp 2019

Outline

- 1. Background
- 2. Motivation
- 3. Technique
- 4. Implementation and Evaluation
- 5. Conclusion

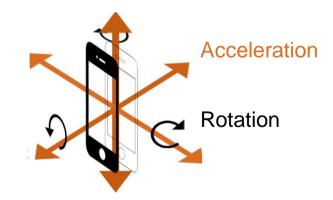
Odometry : Estimating change in position over time *i.e* distance

Robotics

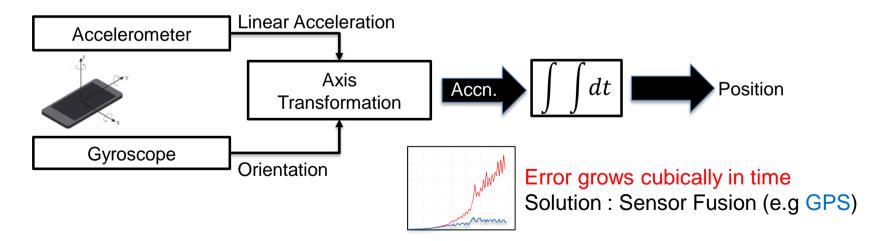
Several Applications

Inertial Odometry : Odometry using IMUs (Accelerometer + Gyro)

- Power Efficient
- Ubiquitous
- Inexpensive (~2 USD)
- Scalable



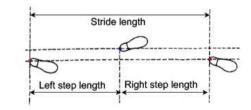
Inertial Odometry : Odometry using IMUs (Accelerometer + Gyro)



Error grows cubically in time Outdoors : Sensor Fusion (GPS + IMU)

Indoors :

- PDR
 - Limited to Step Counts
 - Learning Stride Lengths
 - Only Humans



- Other Modalities (IR, Ultrasound, Vision, LIDAR)
 - Limited range or LoS only
 - Reduced Ubiquity
 - Inconsistent indoor localization accuracy

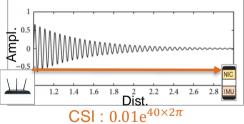
Is there a more ubiquitous modality for accurate indoor inertial odometry?

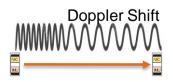
2. Motivation : WiFi assisted Inertial Odometry

- Most handhelds : IMU + WiFi NIC.
- WiFi Communication:
 - Power Efficient
 - Ubiquitous
- Measurements from WiFi communication : CSI
- Device Motion => Doppler Shift in CSI
- CSI =>Doppler Shift => Device Speed => IMU Fusion

Challenge : Doppler Shift \neq **Device Speed**

CSI : Change in Amplitude + Phase





2. Motivation : WiFi assisted Inertial Odometry

Problem Statement :

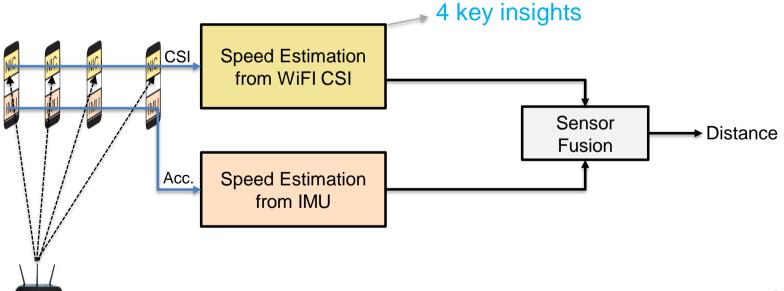
Derive speed from the Doppler Shifts in WiFi signals from a single AP to correct the drift errors in inertial odometry

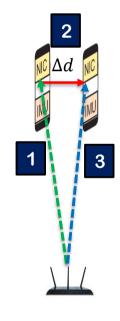
Requirements:

- 1. Not require fingerprinting
- 2. Commodity WiFi Devices
- 3. Resilient to background human movements
- 4. Single AP, no hardware/firmware modifications
- 5. Deployable on robots and humans

3. Technique : Overview

Idea : Measure device movement speed from WiFi channel measurements and correct IMU Speed Drift





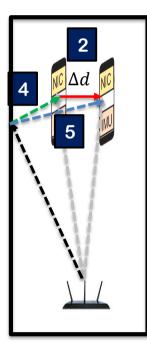
Insight 1 : Path Length Change => Sinusoid in CSI Power

 L_0 : Signal Path Length @ t = 0

Device moves Δd in time Δt

 L_1 : Signal Path Length @ $t = \Delta t$

Path Length Change Speed : $v = \frac{|L_1 - L_0|}{\Delta t}$ CSI Power : $A * \cos\left(\frac{2\pi v \Delta t}{c/f} + \frac{2\pi L_0}{c/f} + \varphi_{sk}\right)$



Insight 2 : Different Multipaths => Different sinusoids in CSI Power

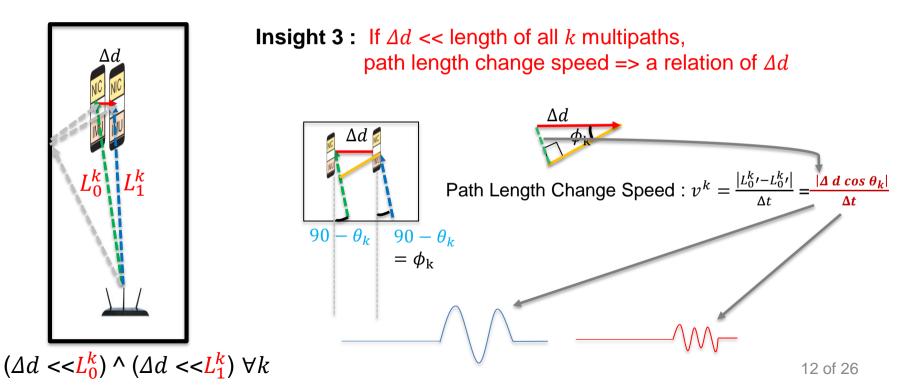
 L_0' : Signal Path Length @ t = 0

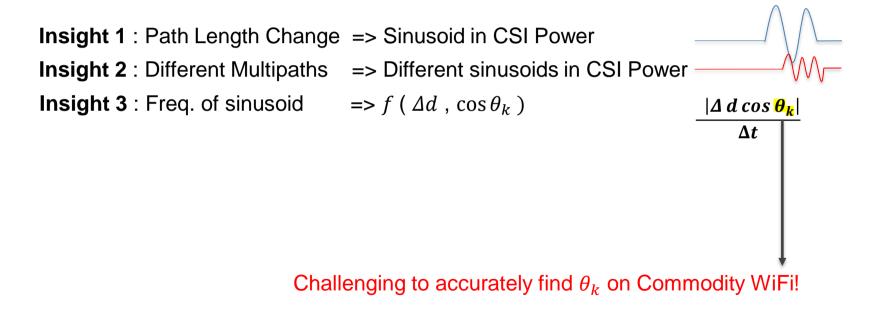
Device moves Δd in time Δt

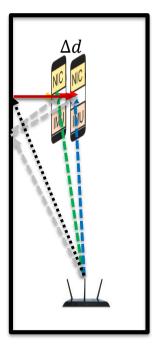
 L_1' : Signal Path Length @ $t = \Delta t$

Path Length Change Speed : $\boldsymbol{v}' = \frac{|L_1' - L_0'|}{\Delta t}$ CSI Power : $A' * \cos\left(\frac{2\pi \, \boldsymbol{v}' \Delta t}{c/f} + \frac{2\pi L_0'}{c/f} + \varphi'_{sk}\right)$

11 of 26

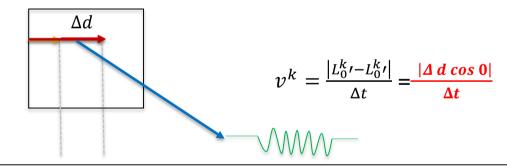






Insight 4 :

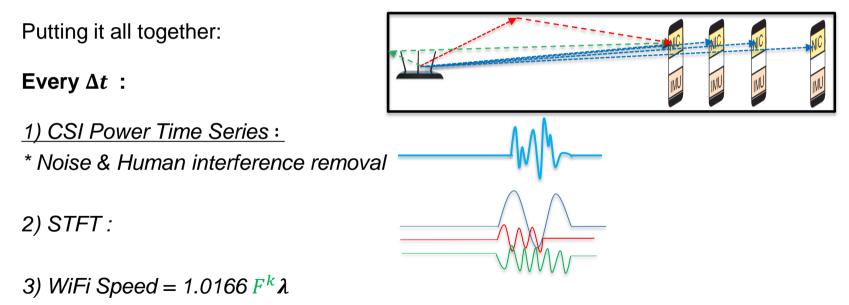
Multipath *k* most parallel to the direction of motion i.e $\theta_k = 0$ or $\theta_k = \pi \Rightarrow$ highest path length change speed



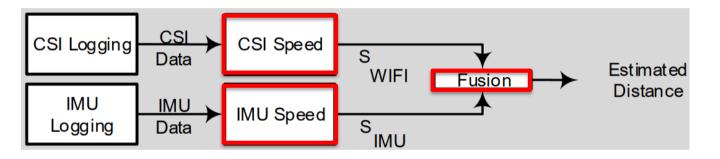
Freq (Highest Frequency Sine) × Wavelength \approx Device Speed

 $v^k \approx F^k \lambda \implies \Delta d \approx v_k \Delta t \implies \Delta d \approx F^k \lambda \Delta t$

 $\lambda = 5.2 cm @5.8 Ghz!$



e.g <u>1.0166 * 5 hz* 5.2cm = 26.413 cm/s</u>



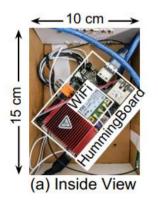
 Bias Computation
Bias Elimination
IMU Speed =

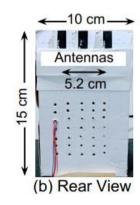
 $v_x^2 + v_y^2 + v_z^2$

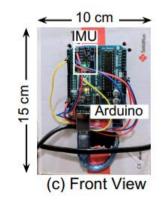
Kalman Filter
1) Process Var : IMU Speed
2) Measurement Var : CSI Speed
3) Compute optimal
middle ground estimate

Testing Platform : Custom Handheld device (10cm x 15cm x 5cm box)

Inside : HummingBoard Pro running Ubuntu 14 + Intel WiFi Chipset Outside: Rear : 3 Omnidirectional Antennas (HalfWave ULA) Front : Arduino Uno + Invensense MPU-6050 IMU + USB



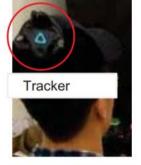




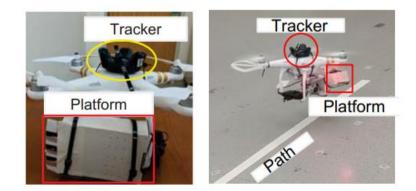
 θ_k

Deployments : Humans (4M, 2F) + Drone

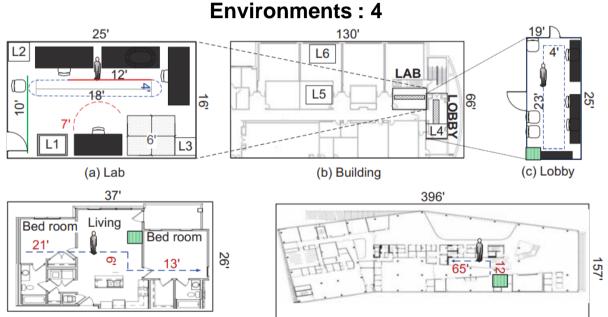
(a) Deployment in a vest pocket



(b) Subject with HTC Vive Tracker

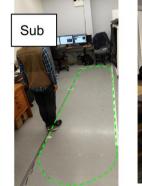


Drone with Vive Tracker



(d) Apartment

(e) University Library

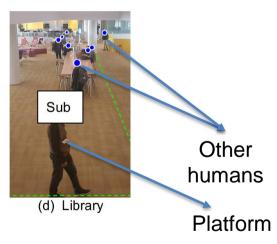


(a) Lab

(b) Apartment

Sub

(c) Lobby



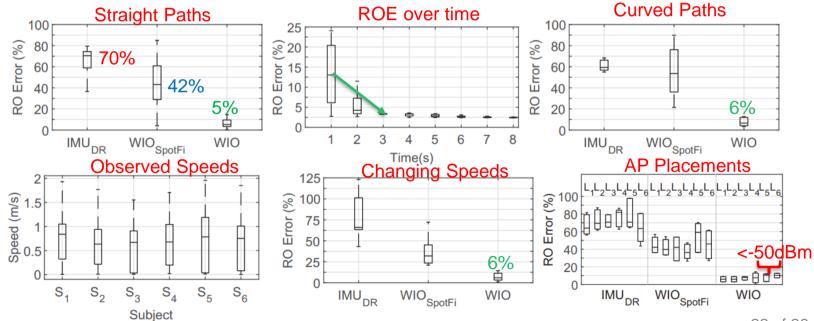
Environments : 4

Evaluation Metric :

RO Error = |Estimated Distance-Actual Distance| Actual Distance

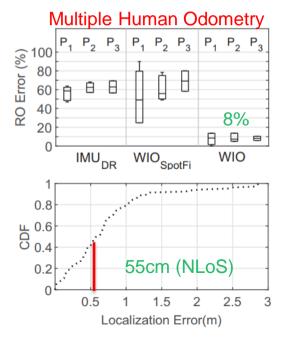
- IMU_{DR} Distance computed from IMU double integration
- WIO_{SpotFi} Distance computed from Most Parallel Path using a state-of-the-art SuperResolution AoA Method (θ_k Insight 3)
- WI0 Distance computed from Insight 4 (*HF sinusoid*)

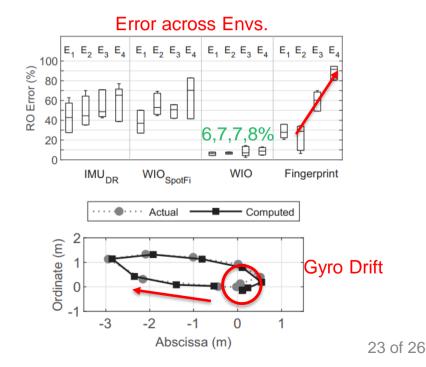
1. Human Deployments



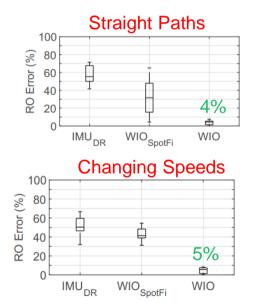
²² of 26

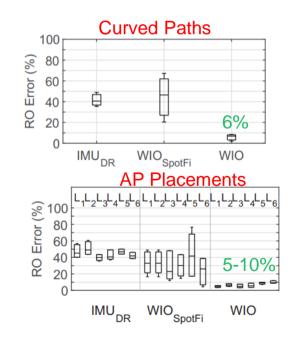
1. Human Deployments





2. Drone Deployment





5. Conclusion

- Proposed a novel WiFi-assisted inertial odometry technique
- The key novelty of using the WiFi signals as the auxiliary source of information that works in indoor environments, w/o fingerprinting, and resilient against changes in environment
- Median RO error of just 6.87% and 5.7% respectively for human subjects and a drone across all scenarios, and at least 3x more accuracy compared to pure Inertial Odometry

Thank You!