Recognizing Gestures with Ambient Light

Raghav H. Venkatnarayan
Muhammad Shahzad

North Carolina State University
Raleigh NC USA
Motivation

• Gesture Recognition enables various interactive applications.

Gaming

Health Care

Smart Homes

AR

• Multiple Modalities

Wearables

Sound

Vision/IR

RF
Motivation

• Gesture Recognition using Ambient Light Signals

 ▪ **Ubiquitous:**
 Light Sources are available everywhere

 ▪ **Non-invasive:**
 Movements can be sensed from shadows

 ▪ **Preserve Privacy:**
 Signals do not leak through walls
Existing Approaches

Okuli (MobiCom ‘15)

GestureLite (DTR ‘16)

Limited Range
(< 30cm)

VLAS (VLCS ‘16)

CeilingSee (PerCom ‘16)

Limited Resolution
(Room-Level Semantics)

LiSense (MobiCom ‘15)

StarLight (MobiSys ‘16)

Active Sensing:

Controlled lighting infrastructure
(Modulated LED lights)
Problem Statement

Design a passive, ambient light based gesture recognition system

- Unmodulated Light Sources
- Agnostic to changing lighting conditions
- Agnostic to changing user position and orientation
- Recognize gestures of any given user
Approach

Observations:
- Shadows follow movements
- Different gestures create distinct shadow patterns on the floor

Idea:
- Instrument floor to learn shadow patterns using ML models and infer gestures.

Contributions
- Capturing features agnostic to different lighting conditions, user positions and orientations
I. Preprocessing

1. Denoising:
 Separating signal from the noise

 (i) Stray Shadows and Reflectors:
 Varying photocurrent levels with environmental changes.

 (ii) Light Source Flicker (AC Powered):
 Fluctuations of comparable magnitude
 -Well localized in Frequency Domain

 (iii) Shot noise
 Spurious burst noises
 -Well localized in Time Domain
I. Preprocessing

2. Gesture Detection:

Thresholding with a sliding window

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1.5</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-2.5</td>
</tr>
<tr>
<td>4</td>
<td>-2.5</td>
</tr>
</tbody>
</table>

Window

Threshold
I. Preprocessing

3. Standardization
 Handling changes in intensity across sensors

- Umbra/Penumbra
- Dimming
- Adding multiple lights

Significant difference in darkness
I. Preprocessing

3. Standardization

Handling changes in intensity across sensors

Solution: Scale each sensor time series by deviation

Similar darkness
II. Feature Extraction

- Std. Streams
- Wavelet Transformation (Basic)
- Coeffs.
- Rasterization (Refined)
- Image
- Feature Reduction
- Features
II. Feature Extraction

1. Wavelet Transformation:

Objective:
Characterize shape of the signal.

Approach:
Extract a joint signature in time and frequency domains using Discrete Wavelet Transform.
II. Feature Extraction

2. Rasterization:

Handling changes in features caused by shifts in position of light sources or position of users

Effect: Changing Direction and length of shadows across samples
II. Feature Extraction

2. Rasterization:

Example:

6 sensors see variations

10 sensors see variations

Need a way to negate the effects of change in shadow length/direction
II. Feature Extraction

2. Rasterization:

Existing Approaches:

- Identify blockage of individual light sources using Frequency Modulation to localize shadows
- Shadows can then be scaled, translated or rotated

• Cannot be applied to unmodulated / unknown light sources
II. Feature Extraction

2. Rasterization:

How to handle variations in position of light sources or position of users with unmodulated light sources?

Observations:

1) Sensor values still have similar patterns* due to same blocking source

2) More light sources =>
 Multiple redundant shadows

3) Change in shadow length =>
 Change in No. of sensors

4) Change in shadow direction =>
 Change in index of sensors
II. Feature Extraction

2. Rasterization:

How to handle variations in position of light sources or position of users with unmodulated light sources?

Solution: Map all sensor coefficients into a 2D image

Redundant / Similar patterns merge
II. Feature Extraction

3. Feature Reduction:

Objective:
Extract only features of high classification potential

Approach:
Dimensionality Reduction

50x256 = 12800 pixels
III. Classifier Training / Recognition

Feature Vector (Training) → SVM : RBF Kernel + Grid Search → One Vs All Models

Feature Vector (Runtime) → Best Match
Implementation

<table>
<thead>
<tr>
<th>Sensor Density</th>
<th>1/sq.ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production System Cost</td>
<td>$0.2 /sq.ft</td>
</tr>
<tr>
<td>Avg Cost of Carpeting</td>
<td>$3 /sq.ft</td>
</tr>
</tbody>
</table>
Evaluation

- **Volunteers**: 20
 - Height: 150cm – 180cm
- **Gestures**: 5
 - Clap, Hug, Jump, Punch, Step
- **Positions**: 9
- **Orientations**: 4
- **Lighting Conditions**: 11
- **Environments**: 2 (15175 Samples)

![Diagram showing Lab and Living Room]
Evaluation

1. Recognition Accuracy: Unseen User Positions

Average: 95.2%
Evaluation

2. Recognition Accuracy: Unseen User Orientations

![Bar chart showing accuracy for different user orientations with an average of 94.5%]

Average: 94.5%
Evaluation

3. Recognition Accuracy : Unseen lighting conditions

- Living Room (Sunlight) [200,1700 lux]
- Lab (Fluorescent) [280,320 lux]

Average : 96.1% , 93%
Evaluation

4. Recognition Accuracy : Unseen Users

Average : 94.64%
Key Takeaways

1. Demonstrated a gesture recognition system using only ambient light.

2. Developed feature extraction methods agnostic to changing lighting conditions, user positions, user orientations, users.

3. Extensively evaluated a prototype using low-cost commercially available sensors.

4. Demonstrated average accuracy (96%) comparable to existing RF-based gesture recognition systems.
Limitations

1. Obstructions

2. Sensitivity to low-illumination levels (<300 Lux)

3. Users cannot walk while performing gesture